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Abstract. A path integral representation for the system with spin is considered. Explicit path
integral representations are given in classical phase space for spin realized as the complex Kãhler
manifold and as the Grassmann algebra for the spin-1

2 case.

1. Introduction

The path integral representation of the wavefunction has the advantage of a clear and compact
formulation of quantum theory in terms of classical theory. In some cases, spin effects should
be taken into account, for example in the cases of polarized electron beam scattering or studies
of magnetic materials.

The works of Klauder [1, 2] are related to this subject. These works use spinor coherent
states with the parametrization of spin phase space by spherical coordinates. In the present
work we give an explicit path integral representation in classical phase space for spin realized
as the complex K̃ahler manifold. This form is natural in the case of complex realization of
phase space for non-spin variables (the Fock–Bargmann representation of wavefunctions).

The spin-12 case can be treated in terms of fermi operators. The corresponding path
integral representation uses Grassmann variables. Although there are many works devoted
to this subject, all of them assume (explicitly or not) that the Hamiltonian is even function
of fermions. The path integral representation in Grassmann algebra in the general case of a
Hamiltonian of arbitrary parity can be found in [3]. In the present paper we use this result to
find an explicit path integral representation in the case of spin-1

2.

2. A path integral representation for a system with spin

Spin effects are described by a relativistic Hamiltonian. The relativistic Hamiltonian correct
to 1/c (c = 137 au—the velocity of light), which is known as the Pauly Hamiltonian, is

Ĥ = 1

2

(
p̂− 1

c
A

)2

+ V − 1

c
ŝB (2.1)

whereŝ is the spin operator,B = rotA is the magnetic field with vector potentialA, (atomic
units are used). The corresponding Schrõdinger equation contains the spinor wavefunctionψ .

The Hamiltonian equation (2.1) describes propagation in a magnetic field. In the absence
of magnetic field, spin effects of higher order, such as spin–orbit and spin–spin interactions,
are distinct. They are described by the relativistic Hamiltonian correct to 1/c2 which is known
as the Breight Hamiltonian.
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We should write formulae, for instance, of Hamiltonian equation (2.1) only, although all
results are valid for an arbitrary Hamiltonian.

The path integral representation may be derived by using generalized coherent state theory
[4]. For a system with spin we consider two possible systems of generalized coherent states:
(i) Spinor coherent states [1, 4] (section 2.1); (ii) fermion coherent states [5] (section 2.2).

2.1. Spinor coherent states

In this case spin operatorsŝ are treated as generators of the groupSO(3) locally isomorphic to
SU(2). The corresponding generalized coherent states are parametrized by elements of some
homogeneous spaceX of the groupSU(2) [4]. The spaceX is a Kãhler manifold and may be
treated as a classical phase space for spin. It is isomorphic to the sphereS2 of dimension two
and has two standard local coordinate realizations:

(1) by spherical coordinates onS2;
(2) by stereographic projection ofS2 on complex planeC.
Case (1) was considered in [1, 2]. We consider case (2) and write the coherent state as

|ζ 〉, with complexζ ∈ C, and the adjoint state as〈ζ ∗|.
Coherent states define covariant symbols of the operators [6] as

A(ζ ∗, η) = 〈ζ
∗|Â|η〉
〈ζ ∗|η〉 (2.2)

which may be treated as the corresponding classical values (the correspondence principle).
Coherent states also define covariant symbols of the wavefunctions

ψ(ζ ∗) = 〈ζ
∗|ψ
〈ζ ∗|0〉 (2.3)

where|0〉 is the vacuum state.
Operators and wavefunctions can be restored by their symbols.
The covariant symbols of the spin operatorŝ are

sx(ζ
∗, η) = 1

2

ζ ∗ + η

1 + ζ ∗η
sy(ζ

∗, η) = 1

2i

ζ ∗ − η
1 + ζ ∗η

sz(ζ
∗, η) = −1

2

1− ζ ∗η
1 + ζ ∗η

. (2.4)

First, let us formulate the path integral representation for spin motion only. The spinor
wavefunction symbol has the following representation:

ψ(ζ ∗) =
∫

exp(iS)ψin(ζ̃
∗(0)) dζ̃ ∗ dζ̃ . (2.5)

Formula (2.5) assumes integration by all virtual trajectoriesζ̃ ∗, ζ̃ in phase spaceX with the
condition

ζ̃ ∗(t) = ζ ∗ (2.6)

at the final point.

S =
∫ (

1

i
∂∗F(ζ̃ ∗, ζ̃ )−H(ζ̃ ∗, ζ̃ ) dt

)
is the classical Hamilton-K̃ahler action, where

F = ln(1 + ζ ∗ζ )

is the potential of K̃ahler’s metrics onX and

∂∗F = ζ dζ ∗

1 + ζ ∗ζ
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is the differential 1-form on the complexified cotangent fibration for manifoldX .
The continual path integral (2.5) can be treated as the limit of the finite-dimensional

approximations [6]

ψ(ζ ∗l+1) =
∫

exp(iSl)ψin(ζ
∗
0 ) dζ̃ ∗ dζ̃

whereζ̃ ∗ = (ζ ∗0 , . . . , ζ ∗l+1), ζ̃ = (ζ0, . . . , ζl) is the discrete phase trajectory,

dζ̃ ∗ dζ̃ =
l∏
0

dµ(ζ ∗k , ζk)

where

dµ(ζ ∗, ζ ) = − 2

π

∂2F

∂ζ ∗∂ζ
dζ ∗ ∧ dζ = − 2

π

dζ ∗ ∧ dζ

(1 + ζ ∗ζ )2

is the invariant measure onX , and

Sl =
l∑

k=0

1Sk 1Sk = 1

i
1∗kF −1tH(ζ ∗k+1, ζk) (2.7)

where

1∗kF = F(ζ ∗k+1, ζk)− F(ζ ∗k , ζk).
The covariant symbol of the Hamilton operator (2.1),H(ζ ∗k+1, ζk), can be expressed by the
covariant symbols of the spin operators(ζ ∗k+1, ζk), equation (2.4).

The corresponding expressions for both the spin and orbital motions are as follows. For
a continual path integral

ψ(ζ ∗, q) =
∫

exp(iS)ψin(ζ̃
∗(0), q̃(0)) dζ̃ ∗ dζ̃ dq̃ dp̃

with virtual trajectories with the conditions of equation (2.6) and

q̃(t) = q (2.8)

at the final point, and

S =
∫ (

1

i
∂∗F(ζ̃ ∗, ζ̃ ) + dq̃p̃ −H(ζ̃ ∗, ζ̃ , q̃, p̃) dt

)
.

For finite-dimensional approximations

ψ(ζ ∗l+1, ql+1) =
∫

exp(iSl)ψin(ζ
∗
0 , q0) dζ̃ ∗ dζ̃ dq̃ dp̃

whereSl has the form of equation (2.7) with

1Sk = 1

i
1∗kF +1qkpk −1tH(ζ ∗k+1, ζk, qk+1, pk). (2.9)

The covariant symbol of the Hamilton operator (2.1) correct to 1/c is

H(ζ ∗k+1, ζk, qk+1, pk) = 1

2
p2
k −

1

c
pkA(qk+1)− i

2c
divA(qk+1) + V (qk+1)

−1

c
s(ζ ∗k+1, ζk)B(qk+1). (2.10)

It should be noted that the path integral in complex Kãhler phase space for spin is natural
in the case of complex realization of phase space for non-spin variables (the Fock–Bargmann
representation of wavefunctions). We have a complex total phase space.
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With

z∗ = 1√
2
(q − ip) z = 1√

2
(q + ip)

the corresponding continual path integral is

ψ(ζ ∗, q) =
∫

exp(iS)ψin(ζ̃
∗(0), z̃∗(0)) dζ̃ ∗ dζ̃ dz̃∗ dz̃

with virtual trajectories with the conditions of equation (2.6) and

z̃∗(t) = z∗
at the final point, and

S =
∫ (

1

i
∂∗F(ζ̃ ∗, ζ̃ ) +

1

i
dz̃∗z̃−H(ζ̃ ∗, ζ̃ , z̃∗, z̃) dt

)
.

For finite-dimensional approximations

ψ(ζ ∗l+1, z
∗
l+1) =

∫
exp(iSl)ψin(ζ

∗
0 , z
∗
0) dζ̃ ∗ dζ̃ dz̃∗ dz̃

whereSl has the form of equation (2.7) with

1Sk = 1

i
1∗kF +

1

i
1z∗kzk −1tH(ζ ∗k+1, ζk, z

∗
k+1, zk).

2.2. Fermions coherent states

In the case of spin-12 operatorŝs may be treated in terms of two operatorsŝ+, ŝ−

ŝx = 1

2
(ŝ+ + ŝ−) ŝy = 1

2i
(ŝ+ − ŝ−) ŝz = 1

2
[ŝ+, ŝ−]

where [, ] is the commutator.
Operatorŝs+, ŝ− satisfy canonic anticommutation relations

1̂= [ŝ+, ŝ−]− 0̂= [ŝ+, ŝ+]− 0̂= [ŝ−, ŝ−]−
where [, ]− is the anticommutator.

So they are Fermi operators and generators of the Heisenberg–Weyl supergroup and define
the corresponding set of generalized coherent states [4, 5].

It should be noted that coherent states of the fermions introduced in [5] do not exist in the
usual space of wavefunctions but only in its extension by Grassmann algebra. Nevertheless,
these states can be used in calculations and give correct results.

The classical phase space for fermions is the Grassmann algebraG with involution ∗.
We write the coherent state as|ζ 〉 and the adjoint state as〈ζ ∗|, whereζ, ζ ∗ ∈ G are

Grassmann algebra generators.
The important difference with usual phase spaces is in the fact that the Grassmann algebra

is not commutative and hence the corresponding symbols of operators are also not commutative
in the general case. This leads to some peculiarities in the path integral representation as was
shown in [3].

The covariant symbols are defined similar to those in equations (2.2) and (2.3).
As in section 2.1 let us consider first the spin motion for ‘frozen’ orbital motion. The

spinor wavefunction symbol has a continual path integral representation similar by form to
equation (2.5)

ψ(ζ ∗) =
∫

exp(iS)ψin(ζ̃
∗(0)) dζ̃ ∗ dζ̃ . (2.11)
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Formula (2.11) assumes integration by all virtual trajectoriesζ̃ ∗, ζ̃ in phase spaceG with a
condition similar to equation (2.6) at the final point and

S =
∫ (

1

i
dζ̃ ∗ζ̃ −H(ζ̃ ∗, ζ̃ ) dt − 1

i
O dt

)
(2.12)

where the termO according to [3] is

O = H o(ζ̃ ∗, ζ̃ )
∫ t

0
H o(ζ̃ ∗, ζ̃ ) dt ′. (2.13)

andH o is the odd part ofH in the Grassmann algebraG.
Without the term in equation (2.13), equation (2.12) has the same form as the Hamilton–

Kãhler action for commutative variables. It is valid for the even Hamilton function (H o = 0).
The nonlinear HamiltonianH term in equation (2.13) is the specific feature of the path integral
representation in the Grassmann algebra in the general case of the Hamiltonian symbol with
arbitrary Grassmann parity [3].

It should be noted that the Pauli Hamiltonian equation (2.1) has no definite parity and it
is essential to take into account the nonlinear term in equation (2.13).

The continual path integral equation (2.11) is treated as the limit of the finite-dimensional
approximations

ψ(ζ ∗l+1) =
∫

exp(iSl)ψin(ζ
∗
0 ) dζ̃ ∗ dζ̃

whereζ̃ ∗ = (ζ ∗0 , . . . , ζ ∗l+1), ζ̃ = (ζ0, . . . , ζl) is the discrete phase trajectory,

dζ̃ ∗ dζ̃ =
l∏
0

dζ ∗k ζk

and with integration in the Grassmann algebra [6]. The termSl has the form of equation (2.7)
with

1Sk = 1

i
1ζ ∗k ζ −1tH(ζ ∗k+1, ζk)−1t

1

i
Ok

where

Ok = H o(ζ ∗k+1, ζk)1t

k∑
j=0

H o(ζ ∗j+1, ζj ).

The covariant symbol of the Hamilton operator equation (2.1),H(ζ ∗k+1, ζk), can be expressed
by the covariant symbols of the spin operators(ζ ∗k+1, ζk), which are

sx(ζ
∗, η) = 1

2
(ζ ∗ + η) sy(ζ

∗, η) = 1

2i
(ζ ∗ − η) sz(ζ

∗, η) = ζ ∗η − 1

2
. (2.14)

The symbolssx , sy are odd andsz is even in Grassmann algebra.
For both the spin and orbital motions the corresponding expressions are as follows. For

the continual path integral

ψ(ζ ∗, q) =
∫

exp(iS)ψin(ζ̃
∗(0), q̃(0)) dζ̃ ∗ dζ̃ dq̃ dp̃

with virtual trajectories with the conditions of equation (2.6) and (2.8) at the final point and
the superaction

S =
∫ (

1

i
dζ̃ ∗ζ̃ + dq̃p̃ −H(ζ̃ ∗, ζ̃ , q̃, p̃) dt − 1

i
O dt

)
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where

O = H o(ζ̃ ∗, ζ̃ , q̃, p̃)
∫ t

0
H o(ζ̃ ∗, ζ̃ , q̃, p̃) dt ′

andH o is the odd part ofH in the Grassmann algebraG .
For finite-dimensional approximations

ψ(ζ ∗l+1, ql+1) =
∫

exp(iSl)ψin(ζ
∗
0 , q0) dζ̃ ∗ dζ̃ dq̃ dp̃

whereSl has the form of equation (2.7) with

1Sk = 1

i
1ζ ∗k ζk +1qkpk −1tH(ζ ∗k+1, ζk, qk+1, pk)−1t 1

i
Ok

where1ζ ∗k = ζ ∗k+1− ζ ∗k and

Ok = H o(ζ ∗k+1, ζk, qk+1, pk)1t

k∑
j=0

H o(ζ ∗j+1, ζj , qj+1, pj ).

The covariant symbol of the Hamilton operator equation (2.1) correct to 1/c is similar in form
to equation (2.9) with equation (2.14) for the spin operator symbols.

3. Conclusions

There can exist different realizations of the classical phase space for spin and corresponding
different path integral representations. Although the realization of phase space as a sphere of
dimension two with natural spherical coordinates is widely used, other possible realizations,
such as the complex K̃ahler manifold and the Grassmann algebra for spin-1

2, have certain
advantages.

The path integral in complex K̃ahler phase space for spin is natural in the case of
complex realization of phase space for non-spin variables (the Fock–Bargmann representation
of wavefunctions).

In the case of Grassmann algebra the nonlinear Hamiltonian term in equation (2.13) is
a specific feature of the path integral representation in the general case of the Hamiltonian
symbol with arbitrary Grassmann parity.
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